Module PINNacle.src.optimizer.adam_lbfgs
Classes
Adam_LBFGS(params, switch_epoch=10000, adam_param={'lr': 0.001, 'betas': (0.9, 0.999)}, lbfgs_param={'lr': 1, 'max_iter': 20})
:
.. warning::
Parameters need to be specified as collections that have a deterministic
ordering that is consistent between runs. Examples of objects that don't
satisfy those properties are sets and iterators over values of dictionaries.
Args:
params (iterable): an iterable of :class:`torch.Tensor` s or
:class:`dict` s. Specifies what Tensors should be optimized.
defaults: (dict): a dict containing default values of optimization
options (used when a parameter group doesn't specify them).
### Ancestors (in MRO)
* torch.optim.optimizer.Optimizer
### Methods
`step(self, closure=None)`
: Performs a single optimization step (parameter update).
Args:
closure (Callable): A closure that reevaluates the model and
returns the loss. Optional for most optimizers.
.. note::
Unless otherwise specified, this function should not modify the
``.grad`` field of the parameters.